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Abstract. A formal correspondence beetwen the surface magnetization of an Ising quantum
chain, perturbed by the paper-folding aperiodic sequence, and the partition function of a classical
Ising chain in an inhomogeneous external field is derived. The perturbation is marginal and the
critical exponentβs associated with the surface magnetization is a continuous function of the
perturbation amplitude. We obtain this exponent by analysing the classical chain.

The discovery of quasi-crystals [1] and the possibility of building artificial layered structures
has initiated the theoretical study of aperiodic systems [2]. The influence of such a
layered aperiodicity on critical behaviour was clarified by Luck’s relevance criterion [3, 4].
According to this criterion, an aperiodic modulation can be irrelevant, marginal or relevant
depending on the sign of a crossover exponent involving the correlation length exponentν

and the wandering exponentω, characteristic of the sequence. The exact results obtained
for the surface magnetization of the two-dimensional layered Ising model with several types
of aperiodic modulations (irrelevant, marginal and relevant) are in agreement with the Luck
criterion [5].

Recently, an unnoticed connection between aperiodic layered quantum Ising chains
and directed random walks was pointed out [6]. Here, a new unexpected relationship
between the surface magnetic critical behaviour of such an aperiodic quantum system and
the free energy density associated with a one-dimensional classical system is presented. The
aperiodic sequence under consideration is the so-called paper-folding sequence obtained
from substitution rules [7]. Bercheet al [8] have treated this problem in the extreme
anisotropic limit which leads to the consideration of the behaviour of a quantum Ising chain
in a transverse field with Hamiltonian

H = −1

2

∞∑
k=1

(σ zk + λkσ xk σ xk+1) (1)

where σ are Pauli matrices. The aperiodicity is generated through a modulation of the
couplings, parametrized byλk = λrfk , wherer is the modulation ratio andfk = 0 or 1
following the sequence. According to Luck’s criterion [3–5] the perturbation is marginal [8].
Thus one expects the critical exponents to vary continuously withr.
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In the ordered phase, the surface magnetizationms (associated with the first site on the
quantum chain) in a semi-infinite system is given by [9]

ms =
(

1+
∞∑
k=1

k∏
j=1

λ−2
j

)−1/2

. (2)

For the aperiodic system, withλk = λrfk , this leads to

ms = [S(λ, r)]−1/2 S(λ, r) = 1+
∞∑
k=1

λ−2kr−2nk (3)

wherenk =
∑k
j=1 fj . The critical couplingλc follows from [10]

lim
L→∞

L∏
k=1

(λk)
1/L
c = 1 (4)

leading toλc = r−1/2. It is shown in [8] that the functionS(λ, r) satisfies the matrix
recursion (

Sodd(λ, r)

Seven(λ, r)

)
=
(
λ−2r−1 λ−2r−2

r−1 1

)(
Sodd(λ

2r1/2, r)

Seven(λ
2r1/2, r)

)
(5)

with

S(λ, r) = Sodd(λ, r)+ Seven(λ, r) (6)

where the subscript odd (even) means that the sum defined in equation (3) runs over odd
(even) integers only. At this stage, we make the change of variables

H = ln

(
λc

λ

)2

(7)

which is natural in the problem since it gives the deviation from the critical point. Defining
r = exp(K), relation (5) becomes(

Sodd(H)

Seven(H)

)
=
(

exp(H) exp(H −K)
exp(−K) 1

)(
Sodd(2H)
Seven(2H)

)
. (8)

Iterating this equationn times, one obtains(
Sodd(H0)

Seven(H0)

)
=

n∏
i=0

T (Hi)
(
Sodd(Hn+1)

Seven(Hn+1)

)
(9)

with H0 = H andHi given byHi = 2Hi−1 = 2iH . It is clear thatT (Hi) can be seen as the
transfer matrix between sitei and sitei+1 of an Ising classical chain in an inhomogeneous
field with Hamiltonian

− H
kBT
= 1

2

( ∞∑
i=0

Hi(Si + 1)+K
∞∑
i=0

(SiSi+1− 1)

)
(10)

whereSi = ±1 are classical Ising variables.
We have thus related the surface magnetization (3) to the partition functionZ of the

classical Ising chain in a field exponentially increasing from the first site towards the bulk.
In the ordered phase,λ > λc, H0 < 0 and the classical spinsSi will align very quickly

along the field fori → ∞. In particular, for the non-interacting system withK = 0
(corresponding to the homogeneous quantum chain sincer = 1) the profile〈Si〉 on the
classical chain exponentially reaches the value−1 from the first site towards the bulk. So
the trivial fixed pointλ? = ∞ of the renormalization transformation (5) corresponds in the
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classical system to a completely ordered phase with expectation value〈S〉 = −1. We argue
that this situation remains unchanged forr 6= 1 (see equation (A.6) of [8]).

Forλ < λc, equation (2) is no longer valid. However, one can still examine the classical
chain. The situation forH0 > 0 is now the opposite of the previous one and the system
will be ordered in the+1 direction.

At criticality, the situation is intermediate between the two previous ones and
corresponds to an unstable fixed point of the renormalization scheme. From (7)H = 0, and
all the T (Hi) reduce to the sameT . Then the partition functionZn of the classical chain
with sizen is simply given by

Zn = tr T n = 3n
1

[
1+

(
32

31

)n]
(11)

with 31 (32) the largest (smallest) eigenvalue of the transfer matrixT . In the
thermodynamic limit the free energy per site isf (K) = −kBT ln31.

The finite-size behaviour of the surface magnetization (3) leads to

S(λc, r)L ∼ L2βs. (12)

The sizeL of the quantum chain and the sizen of the classical chain are related through
the relationL = 2n. We can then identify(2n)2βs ∼ 3n

1, which leads to

βs = 1

2

ln31

ln 2
= 1

2

ln(1+ r−1)

ln 2
(13)

in agreement with [8]. So we have derived a simple relation between the critical exponentβs

calculated in the quantum Ising chain with a transverse field and the free energy density of
a one-dimensional classical Ising model. One may note that the critical exponentβs = 1/2
of the ordinary surface transition associated with the homogeneous system is obtained by
setting r = 1 in equation (13). This means that the surface magnetic behaviour of the
homogeneous quantum chain is related to the free energy density of a set of non-interacting
classical spins in an inhomogeneous field (see equation (10)), sincer = 1 impliesK = 0.

Finally, one could ask if this kind of relationship still holds for other sequences or
whether it is peculiar to the paper-folding case. This point is currently under investigation.

References

[1] Schechtman D, Blech I, Gratias D and Cahn J W 1984Phys. Rev. Lett.53 1951
[2] Henley C L 1987Comments Condens. Mater. Phys.13 59
[3] Luck J M 1993J. Stat. Phys.72 417
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